Simetrias na Física Clássica

Henrique Fleming

29-12-2001

1 Introdução

O sistema que vamos estudar é caracterizado por uma densidade lagrangeana \(\mathcal{L} \). Por enquanto estaremos restritos ao espaço-tempo de Minkowski. A ação clássica, então, é:

\[
S = \int d^4x \mathcal{L}(\phi, \partial_{\mu} \phi),
\]

onde tomamos \(\mathcal{L} \) como função de alguns campos \(\Phi(x) \) e de suas primeiras derivadas \(\partial_{\mu} \phi(x) \). Começaremos supondo que os campos \(\phi(x) \) sejam escalares, para revelar mais claramente a estrutura do método.

Uma transformação infinitesimal dos campos

\[
\phi(x) \rightarrow \phi'(x) = \phi(x) + \delta \phi(x)
\]

induz uma variação infinitesimal \(\delta \mathcal{L} \) na densidade lagrangeana. Diz-se que a transformação é uma simetria quando é possível mostrar, \textit{sem o uso das equações do movimento}, que

\[
\delta \mathcal{L} = \partial_{\mu} \Lambda^\mu
\]

onde \(\Lambda^\mu \) é um quadrivetor.

Comentários:

(i) “Sem o uso das equações de movimento”, ou seja, para todas as configurações, e não somente a configuração que a natureza escolhe.

(ii) É isto que permite que o conceito (de simetria) tenha valor na mecânica quântica, pois ali não há a “configuração que a natureza escolhe”. No formalismo de Feynman o propagador é uma soma sobre todas as configurações concebíveis. Logo, a simetria, como definida no texto, é uma simetria do propagador.

Exemplo 1:

\(\mathcal{L} = \lambda \phi^* \phi \) (O asterisco * representa o complexo conjugado).

A transformação infinitesimal

\[
\delta \phi(x) = i \alpha \phi(x) \quad (\alpha \text{ real})
\]
é uma simetria. de fato,

$$\delta \mathcal{L} = \lambda (\delta \phi^*) \phi + \lambda \phi^* \delta \phi = \lambda (\phi (x) + \epsilon \phi (x'))$$

ou

$$\delta \mathcal{L} = 0$$

significando que $\Lambda^\mu = 0$. Simetrias desse tipo ($\Lambda^\mu = 0$) são ditas simetrias internas.

Exemplo 2: translações.

Uma translação das coordenadas

$$x'^\mu = x^\mu - \epsilon^\mu \text{ (constante)}$$

induz nos campos $\phi(x)$ uma transformação $\delta \Phi(x)$ que calcularemos agora. Como $\phi(x)$ é escalar,

$$\phi' (x') = \phi(x)$$

Por outro lado, expansão em potências de ϵ^μ dá

$$\phi' (x') = \phi(x) + (x' - x) \partial_\lambda \phi'$$

$$= \phi(x) - \epsilon^\lambda \partial_\lambda \phi$$

de maneira que

$$\delta \phi(x) = \phi'(x) = \phi(x) = \epsilon^\lambda \partial_\lambda \phi$$

Suponha que

$$\mathcal{L} (x) = \frac{1}{2} \partial^\mu \phi \partial_\mu \phi - \frac{m^2}{2} \phi^2$$

$$\delta \mathcal{L} (x) = \frac{1}{2} \partial^\mu \delta \phi \partial_\mu \phi + \frac{1}{2} \partial^\mu \partial_\mu (\delta \phi) = m^2 \phi \delta \phi$$

$$\delta \mathcal{L} (x) = \partial_\mu \partial_\mu (\delta \phi) - m^2 \phi \delta \phi$$

$$\delta \mathcal{L} (x) = \partial_\mu \phi \partial^\mu (\epsilon^\lambda \partial_\lambda \phi) - m^2 \phi (\epsilon^\lambda \partial_\lambda \phi)$$

$$\delta \mathcal{L} (x) = \epsilon^\lambda \partial_\lambda \mathcal{L} = \partial_\lambda (\epsilon^\lambda \mathcal{L}) = \partial_\lambda \Lambda^\lambda$$

o que mostra que translações são simetrias do sistema descrito pela lagrangeana exibida.

2 O teorema de Noether

O teorema de Noether afirma que a cada simetria contínua corresponde uma corrente que satisfaz uma equação de continuidade, ou, equivalentemente, uma quantidade que é conservada. Além disso, o teorema fornece uma expressão explícita para a corrente.

Seja $\delta \Phi$ uma transformação de simetria. Então existe Λ^μ tal que

$$\delta \mathcal{L} (x) = \partial_\mu \Lambda^\mu$$
Um cálculo independente de $\delta \mathcal{L}$, desta vez usando as equações de movimento, será realizado agora.

$$
\delta \mathcal{L} = \frac{\partial \mathcal{L}}{\partial \phi} \delta \phi + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \partial_{\mu} \delta \phi
$$

(15)

As equações de movimento são

$$
\frac{\partial \mathcal{L}}{\partial \phi} = \partial_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)}
$$

(16)

que, usadas em (15), dão

$$
\delta \mathcal{L} = \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \right) \delta \phi + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \partial_{\mu} \delta \phi
$$

ou seja,

$$
\delta \mathcal{L} = \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \delta \phi \right)
$$

(17)

(18)

Subtraindo (18) de (14), tem-se

$$
\partial_{\mu} \left(\Lambda^\mu - \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \delta \phi \right) = 0
$$

(19)

que é o teorema de Noether. A quantidade

$$
J^\mu \equiv \Lambda^\mu - \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \delta \phi
$$

(20)

é a corrente de Noether associada à simetria $\delta \phi$.

2.1 Exemplo 1: translações

Vimos que, neste caso,

$$
\Lambda^\mu = \epsilon^\mu \mathcal{L}
$$

(21)

$$
\delta \phi = \epsilon^\nu \partial_{\nu} \mathcal{L}
$$

(22)

A equação (20) dá, então,

$$
J^\mu = -\epsilon^\nu \left\{ \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \partial_{\nu} \phi - \delta^\mu_{\nu} \mathcal{L} \right\}
$$

(23)

que é a corrente de Noether. Como os ϵ^ν são constantes arbitrárias, a lei de conservação

$$
\partial_{\mu} J^\mu = 0
$$

(24)

pode ser escrita

$$
\partial_{\mu} T^\mu_{\nu} = 0
$$

(25)

onde

$$
T^\mu_{\nu} = \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \partial_{\nu} \phi - \delta^\mu_{\nu} \mathcal{L}
$$

(26)

que reconhecemos como o tensor de momento-energia canônico.
2.2 Exemplo 2: transformações de Lorentz

As transformações infinitesimais de Lorentz

\[x'^\mu = x^\mu + \omega^\mu_\nu x^\nu \] \hspace{1cm} (27)

com \(\omega^\mu_\nu = -\omega^\nu_\mu \) constantes, são um caso particular das transformações infinitesimais gerais

\[x'^\mu = x^\mu + \epsilon^\mu(x) \] \hspace{1cm} (28)

onde \(\epsilon^\mu(x) \) é um campo vetorial infinitesimal. Para um escalar, temos

\[\delta \phi(x) = -\epsilon^\lambda \partial^\lambda \phi(x) \] \hspace{1cm} (29)

Supondo que \(\mathcal{L}(x) \) seja um escalar sob essas transformações, temos ainda

\[\delta \mathcal{L}(x) = -\epsilon^\lambda \partial^\lambda \mathcal{L}(x) \] \hspace{1cm} (30)

Para transformações de Lorentz temos, respectivamente,

\[\delta \phi(x) = -\omega^\lambda_\nu x^\nu \partial^\lambda \phi(x) \] \hspace{1cm} (31)

\[\delta \mathcal{L}(x) = -\omega^\lambda_\nu x^\nu \partial^\lambda \mathcal{L}(x) \] \hspace{1cm} (32)

Como \(\omega^\mu_\nu \) é antissimétrico, temos

\[\partial^\lambda \left(-\omega^\lambda_\nu x^\nu \mathcal{L} \right) = -\omega^\lambda_\nu \delta^\nu_\mu \mathcal{L} - \omega^\lambda_\nu x^\nu \partial^\lambda \mathcal{L} \] \hspace{1cm} (33)

\[= -\omega^\lambda_\nu \mathcal{L} - \omega^\lambda_\nu x^\nu \partial^\lambda \mathcal{L} \] \hspace{1cm} (34)

\[= 0 - \omega^\lambda_\nu x^\nu \partial^\lambda \mathcal{L} \] \hspace{1cm} (35)

e então

\[\delta \mathcal{L}(x) = \partial^\lambda \left(-\omega^\lambda_\nu x^\nu \mathcal{L} \right) = \partial^\lambda \Lambda^\lambda . \] \hspace{1cm} (36)

A equação de continuidade de Noether então é:

\[\partial^\mu \left\{ -\omega^\mu_\nu x^\nu \mathcal{L} + \frac{\partial \mathcal{L}}{\partial (\partial^\nu \phi)} - \omega^\lambda_\nu x^\nu \partial^\lambda \phi(x) \right\} = 0 \] \hspace{1cm} (37)

que pode ser escrita

\[\omega^\lambda_\beta \partial^\mu \left\{ x^\beta \frac{\partial \mathcal{L}}{\partial (\partial^\nu \phi)} \partial^\lambda \phi - \delta^\nu_\lambda x^\beta \partial^\nu \mathcal{L} \right\} = 0 \] \hspace{1cm} (38)

ou

\[\omega^\lambda_\beta \partial^\mu \left\{ x^\beta T^\mu_\lambda \right\} = 0 , \] \hspace{1cm} (39)

onde \(T^\mu_\lambda \) é o tensor de momento-energia canônico. Mas os \(\omega^\lambda_\beta \) não são inteiramente arbitários, já que são antissimétricos. Então, da equação acima, segue apenas que a parte antissimétrica do termo em colchete (antissimétrica em \(\lambda \leftrightarrow \beta \)) é nula. Logo,

\[\partial^\mu \left\{ x^\beta T^\mu_\lambda - x^\lambda T^\mu_\beta \right\} = 0 , \] \hspace{1cm} (40)
que usualmente é escrita

\[\partial_\mu M^\mu_{\beta \lambda} = 0 \] \hspace{1cm} (41)

onde

\[M^\mu_{\beta \lambda} = x_\beta \mathcal{T}_\lambda^\mu - x_\lambda \mathcal{T}_\beta^\mu \] \hspace{1cm} (42)

é o tensor de momento angular.

2.3 Exemplo 3: Eletromagnetismo

O campo eletromagnético livre é um campo eletromagnético na ausência de fontes, isto é, com \(\mathcal{J} = 0 \) e \(\mathcal{R} = 0 \). Por exemplo, uma onda eletromagnética se propagando numa região do espaço onde não há cargas. É descrito pela densidade lagrangeana

\[\mathcal{L} = -\frac{1}{4} F^\mu_\nu F^\nu_\mu \] \hspace{1cm} (43)

com

\[F^\mu_\nu = \partial_\mu A_\nu - \partial_\nu A_\mu \] \hspace{1cm} (44)

No formalismo canônico as variáveis são os \(A_\mu \). Sob translações temos

\[\delta A_\mu (x) = -\epsilon^\lambda \partial_\lambda A_\mu (x) \] \hspace{1cm} (45)

\[\delta \mathcal{L} = \partial_\lambda (\epsilon^\lambda \mathcal{L}) \] \hspace{1cm} (46)

e a corrente de Noether então é

\[J^\mu = -\epsilon^\nu \mathcal{L} + \frac{\partial \mathcal{L}}{\partial (\partial_\mu A_\nu)} \epsilon^\lambda \partial_\lambda A_\nu \] \hspace{1cm} (47)

Como

\[\frac{\partial \mathcal{L}}{\partial (\partial_\mu A_\nu)} = -F^\nu_\mu \] \hspace{1cm} (48)

podemos escrever

\[J^\mu = -\epsilon^\nu \mathcal{L} - F^\nu_\mu \epsilon^\lambda \partial_\lambda A_\nu \] \hspace{1cm} (49)

A lei de conservação

\[\partial_\mu J^\mu = 0 \] \hspace{1cm} (50)

pode ser escrita

\[\partial_\mu J^\mu = \epsilon^\lambda \partial_\mu (\epsilon^\nu F^\mu_\nu \partial_\lambda A_\nu - \epsilon^\nu \delta_\lambda^\mu \mathcal{L}) = 0 \] \hspace{1cm} (51)

e o tensor

\[\mathcal{T}^\mu_\lambda = -F^\mu_\nu \partial_\lambda A_\nu - \delta^\mu_\lambda \mathcal{L} \] \hspace{1cm} (52)

é o tensor de momento-energia canônico. Há três comentários a fazer:

[(1)] O tensor não é independente de gauge. De fato, sob a transformação de gauge

\[A_\nu \rightarrow A_\nu + \partial_\nu \Lambda \] \hspace{1cm} (53)
temos

\[T^{\mu}_\lambda \rightarrow T'^{\mu}_\lambda = -F^{\rho\nu} \partial_\lambda (A_\rho + \partial_\nu \Lambda) - \delta^{\lambda}_\nu \mathcal{L} \]

\[T^{\mu}_\lambda = T^{\mu}_\lambda - F^{\rho\nu} \partial_\mu \partial_\nu \Lambda \]

\[\partial_\rho T^{\rho\nu} = \partial_\rho (F^{\rho\nu} \partial_\lambda A_\lambda) \]

\[\partial_\rho T^{\rho\mu}_\lambda = 0 - F^{\rho\nu} \partial_\mu \partial_\nu \Lambda = 0 \]

onde usamos as equações de Maxwell \(\partial_\rho F^{\rho\nu} = 0 \) e a antisimetria de \(F^{\rho\nu} \) contraída com a simetria de \(\partial_\rho \partial_\nu \Lambda \). Não só \(T^{\mu}_\lambda \) satisfaz a mesma equação de continuidade que \(T^{\mu}_\lambda \); as quantidades conservadas são também as mesmas.

\[\int d^3x T^{\mu\nu} = \int d^3x T^{\mu\nu} - \int d^3x F^{\rho\nu} \partial_\lambda A_\lambda \]

onde usamos de novo as equações de Maxwell \(\partial_\nu F^{\rho\nu} = 0 \).

(ii) O tensor não é simétrico, i.e,

\[T^{\mu\nu} \neq T^{\nu\mu} \]

Embora isto não seja crucial, põe problemas para a teoria de Einstein da gravitação, onde o segundo membro da equação fundamental é o tensor de momento-energia, e o primeiro termo é simétrico. A ausência de simetria é ainda indesejável porque a expressão para o momento angular, em termos do momento linear, não fica tão elegante. Mas é assim que a natureza é! Suponha que \(T_{\mu\nu} \) fosse sempre simétrico. Então,

\[\partial^{\beta} \left(X_\beta T_{\mu\lambda} - x_\lambda T_{\mu\beta} \right) = \delta^{\beta}_\mu T_{\rho\lambda} + x_\beta \partial^{\rho} T_{\mu\lambda} - \delta^{\lambda}_\beta T_{\rho\mu} + x_\lambda \partial^{\rho} T_{\mu\beta} \]

\[= T_{\beta\lambda} - T_{\lambda\beta} + x_\beta \partial^{\rho} T_{\mu\lambda} - x_\lambda \partial^{\rho} T_{\mu\beta} \]

\[= x_\beta \partial_\beta T_{\mu\lambda} - x_\lambda \partial_\lambda T_{\mu\beta} \]

e a conservação do momento linear implicaria sempre na conservação do momento angular, o que não pode ser, já que são associadas a transformações por parâmetros independentes.

(iii) É costume trabalhar com um tensor de momento-energia modificado (mas equivalente, no sentido de que os momentos \(P^{\mu} = \int d\sigma \gamma^{\mu} \) são os mesmos) e simétrico, chamado de tensor de Belinfante-Rosenfeld. Retomamos a relação

\[\delta A_\nu (x) = -e^\lambda \partial_\lambda A_\nu (x) \]

e somamos a ela, e subtraímos, \(-e^\lambda \partial_\nu A_\lambda \). Temos

\[\delta A_\nu (x) = -e^\lambda (\partial_\lambda A_\nu - \partial_\nu A_\lambda) - e^\lambda \partial_\nu A_\lambda \]

Usando esta expressão na corrente de Noether, tem-se

\[J^{\mu} = -e^\lambda \mathcal{L} - e^\lambda F^{\rho\nu} (F_{\lambda\nu} + \partial_\nu A_\lambda) \]

e a lei de conservação é

\[0 = \partial_\mu J^{\mu} = e^\lambda \partial_\mu (-F^{\rho\nu} F_{\lambda\nu} - \delta^{\mu}_\lambda \mathcal{L}) - e^\lambda \partial_\mu (F^{\rho\nu} \partial_\nu A_\lambda) \]

Mas, no último termo, \(\partial_\mu F^{\rho\nu} = 0 \) (Maxwell) e \(F^{\rho\nu} \partial_\nu \partial_\lambda A = 0 \) (simetria).

Logo,

\[T^{\mu\nu}_\lambda = -F^{\rho\nu} F_{\lambda\rho} - \delta^{\mu}_\lambda \mathcal{L} \]
satisfaz

$$\partial_\mu T_{\mu \lambda}^\nu = 0$$ \hspace{1cm} (66)

bem como \(T_{\nu \mu \lambda} = T_{\lambda \mu \nu} \). Tem-se ainda que

$$\int d^4 x T_{\mu \mu}^0 = \int d^4 x T_{\nu \nu}^0$$ \hspace{1cm} (67)

É este \(T_{\mu \mu}^\nu \) que é denominado tensor de Belinfante-Rosenfeld.